Lecture 10 Condition Assessment of Concrete Structures (1/3) (Exposure conditions, visual inspection, on-site concrete testing)

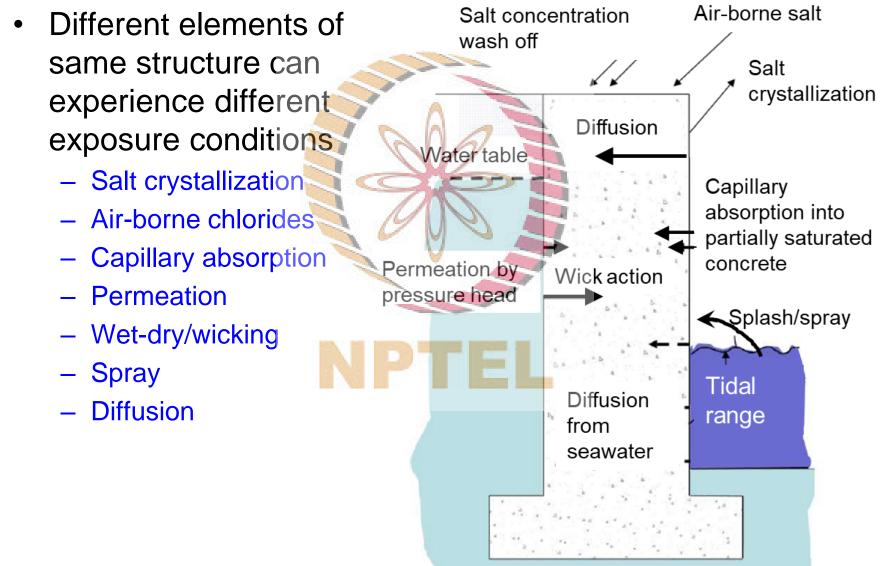
Radhakrishna G. Pillai

Department of Civil Engineering Indian Institute of Technology Madras, Chennai, India

NPTEL – MOOC Course on Maintenance and Repair of Concrete Structures

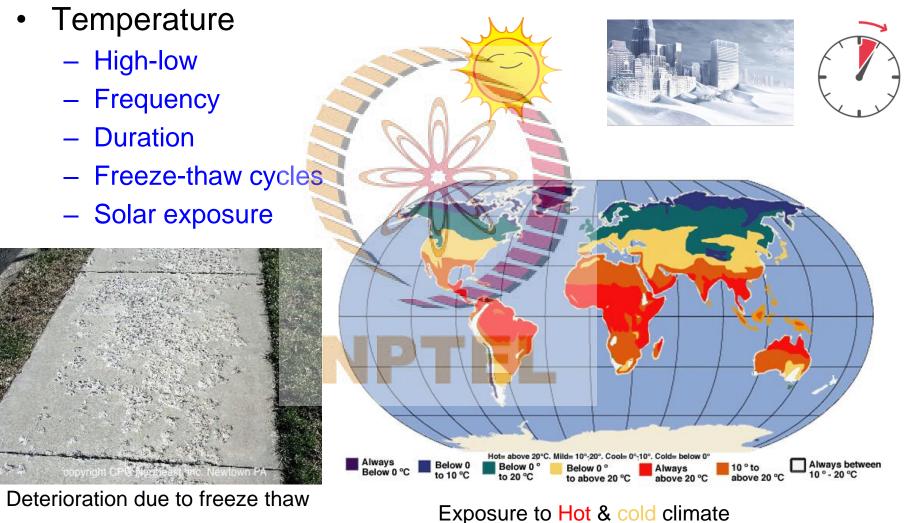
Courtesy: Some images are sourced from the internet for demonstration purposes.

Outline of Module on Condition assessment of concrete structures

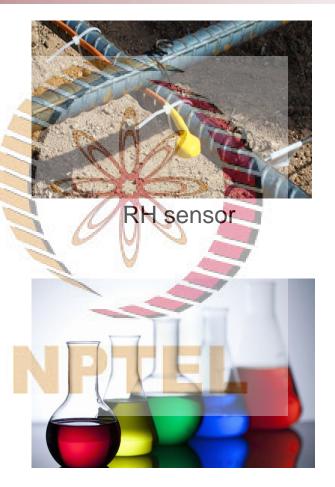

NUTE OF TECHNOLOGY MADO

- Service and exposure conditions
- Visual inspection
- Testing of concrete at site
- Testing of concrete in laboratory
- Testing on rebars in field and laboratory

NPTEL


Service and exposure conditions

Service and exposure conditions



https://dailyhungama.net/coldest-countries-in-the-world.html; http://earth.rice.edu/mtpe/atmo/atmosphere/hot/anom_99/gsurfacetemp.html; https://www.mti-id.com/blog/freezethaw-protection

Service and exposure conditions

- Moisture
 - Relative humidity range
 - Contact type
 - immersion, runoff, etc.
 - Frequency
 - Duration of exposure
- Chemical
 - Туре
 - Form: gas, liquid, solid
 - Concentration
 - Frequency of exposure
 - Duration of exposure

Concrete immersed in sea water

Moving/static

- Impact
- Vibration
- Size/magnitude

Structural loading

- Overloading
- Frequent/occasional
- Frequency
- Duration

Service and exposure conditions

Typical steps for condition assessment of reinforced concrete structures

- Visual inspection (walk-through)
- Review of engineering data
 - Drawings/documents
 - Operation/maintenance records
 - Concrete/materials records
 - Previous inspection reports
 - Talking to different site personnel
 - History of loading, repairs etc.
- Condition Survey
 - Mapping, monitoring, joint survey, sampling and testing, NDT, structural analysis
- Final evaluation and recommendations
 - Full/partial repair
 - Replacement

Visual inspection

- Description of structure
 - Name/location
 - Type/size
 - Owner/engineer/contractor
 - Photographs/identification of shady region
- Materials used
 - Steel Type, residual
 - Concrete Aggregate type/size, admixture type, mixture proportion, compressive strength, etc.
 - Others
- Environmental and structural loading conditions
- Distress indicator
 - Cracking, staining, surface deposits,
 - Leaking, alignment of structure

Visual inspection

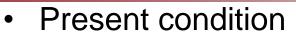

OF TEC

Fig. 2.1.2.7-Map (pattern) cracking.

ACI 201.1R-08

- Formed and finished surfaces
- Cracking/scaling/spall
- Curling and warping
- Erosion
- Others
- Previous repair / history
 - Patch
 - Surface coating
 - Protective system
 - Sealers
 - Others

ACI 201.1R-08 Guide for Conducting a Visual Inspection of Concrete in Service

D-cracks: (a) fine; and (b) severe, with spalling

Visual and exploratory investigation - Effects

- Cracking and crazing
- Surface distress
 - Spalling, surface disintegration, honeycomb, scaling
- Water leakage
 - Surface dampness, seepage through joints/cracks

Cracking

Dampness

Seepage

Honeycomb

Peter H. Emmons; http://m.engineeringnews.co.za/article/how-to-prevent-craze-cracking-on-concrete-floors-2016-07-07

Visual and exploratory investigation – Effects

- Movements
 - Deflections, heaving, settlement
- Metal corrosion
 - Rust staining, exposed rebars or strands
- Miscellaneous
 - Blistering of coatings/membranes, dislocation


Differential settlement

Corrosion stains

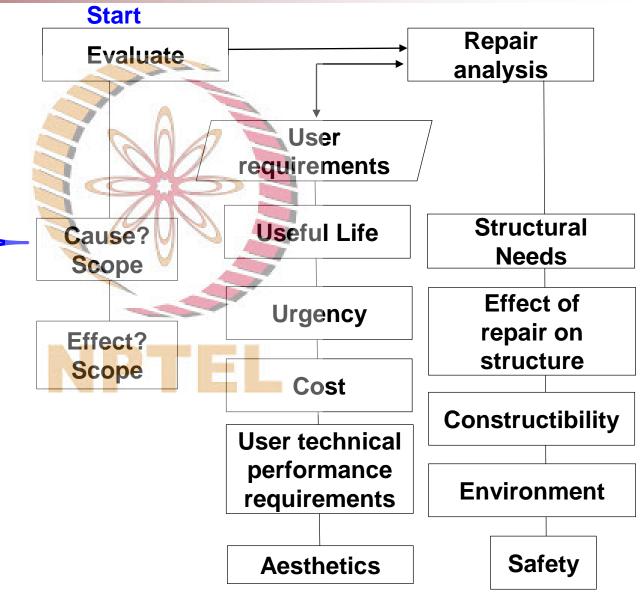
Corroded/exposed rebars

Blistering

Cracking/disintegration

Peter H. Emmons; https://www.flickr.com/photos/136372730@N04/25656773990; https://civildigital.com/effects-corrosion-reinforcement-signs-preventive-measures/; @BoysenTSD; http://onlinepubs.trb.org/onlinepubs/nchrp/docs/NCHRP20-07(307)_FR.pdf

Effects and causes



Should we preserve, repair, or demolish?

Should we repair or protect?

Sol Present and the state of th

- Public safety?
- Structural safety?
- Leakage?
- Effects on environment?
- Functionality?
- Aesthetics?

Standard test methods for evaluating concrete/reinforced concrete

Designation	Title
ASTM C42	Obtaining and testing drilled cores and sawed beams of concrete
ASTM C805	Rebound number of hardened concrete
ASTM C803	Penetration resistance of hardened concrete
ASTM C597	Pulse velocity through concrete
ASTM C496	Splitting tensile strength of cylindrical concrete specimens
ASTM C78	Flexural strength of concrete (using simple beam with three-point loading)
ASTM C293	Flexural strength of concrete (using simple beam with center-point loading)
ASTM C418	Abrasion resistance of concrete by sandblasting
ASTM C876	Half-cell potentials of uncoated reinforcing steel in concrete
ASTM D3633	Electrical resistivity of membrane-pavement systems
ASTM C856	Standard practice for petrographic examination of hardened concrete

Standard test methods for evaluating concrete

Designation	Title
AASTHO T259	Resistance of concrete to chloride penetration
AASTHO T260	Sampling and testing for total chloride ion in concrete and concrete raw materials
AASTHO T277	Rapid determination of the chloride permeability of concrete
ASTM C457	Microscopic determination of chloride permeability of concrete
ASTM C666	Resistance of concrete to rapid freezing and thawing
ASTM C671	Critical dilation of concrete specimens subjected to freezing
ASTM C672	Scaling resistance of concrete surfaces exposed to deicing chemicals
ASTM C642	Specific gravity, absorption, and voids in hardened concrete
ASTM G109	Determining Effects of Chemical Admixtures on Corrosion of Embedded Steel Reinforcement in Concrete Exposed to Chloride Environments
ASTM C876	Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete

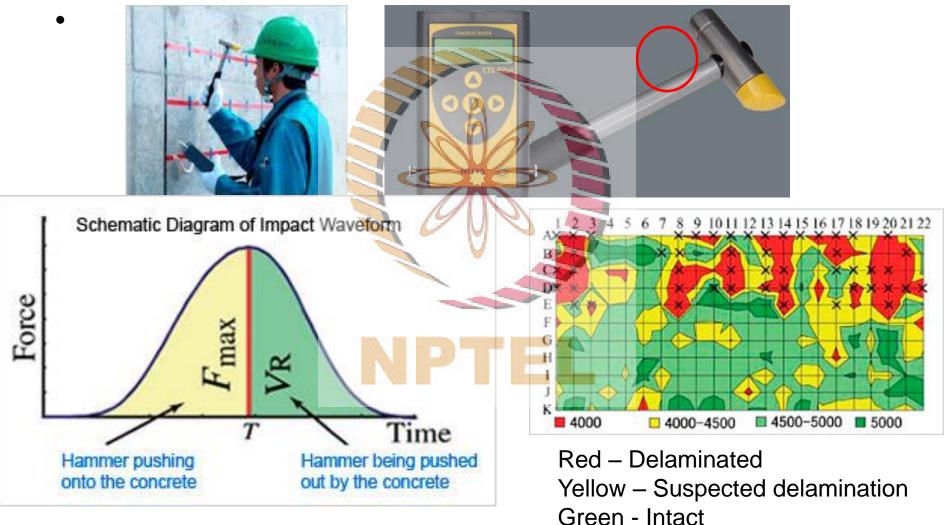
On-site concrete evaluation

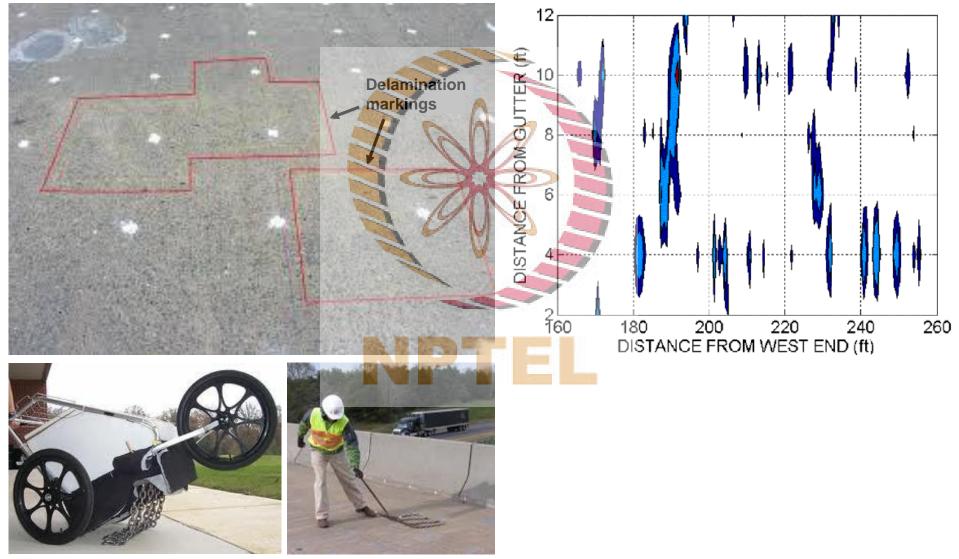
- Visual and Exploratory Investigation
 - Locating delaminated concrete
 - Locating void, crack, honey-comb
 - Remote viewing
 - Locating embedded reinforcing steel
 - In-situ compressive strength
 - Resistivity of concrete
 - Moisture and air permeability of concrete
 - Corrosion activities

https://fhwaapps.fhwa.dot.gov/ndep/DisplayTechnology.aspx?tech_id=16

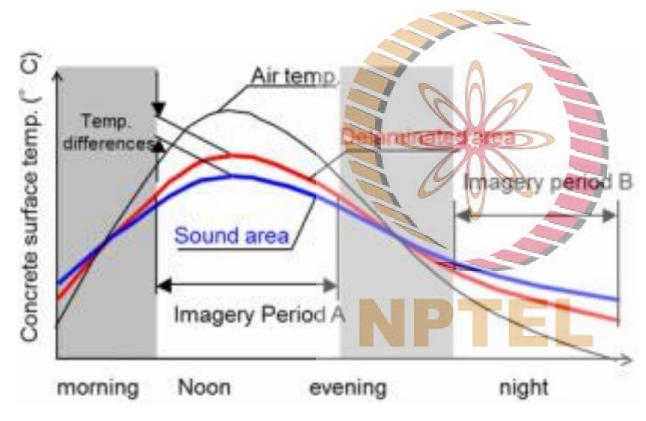
Peter H. Emmons

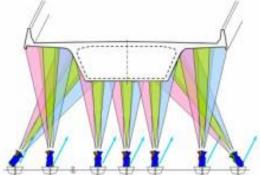
Effects and test methods


- Physical Condition
 - Delamination/voids
 - Hammer sounding
 - Chain drag
 - Impact echo
 - Ultrasonic pulse velocity
 - Exploratory removal
 - Remote viewing (TV, Borescope)
 - Infrared thermography
 - Uniformity
 - Ultrasonic pulse velocity
 - Rebound hammer
 - Core testing


Locating delaminated concrete - Hammer sounding ("ping" → "puck")

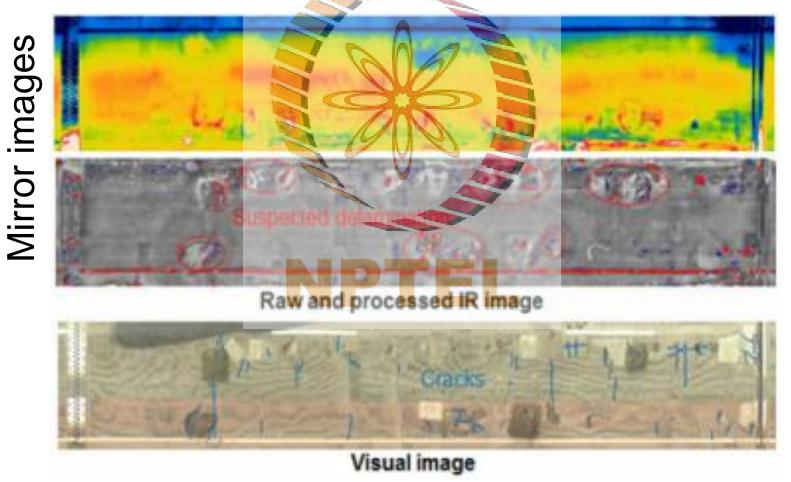
Locating delaminated concrete - Chain drag sounding



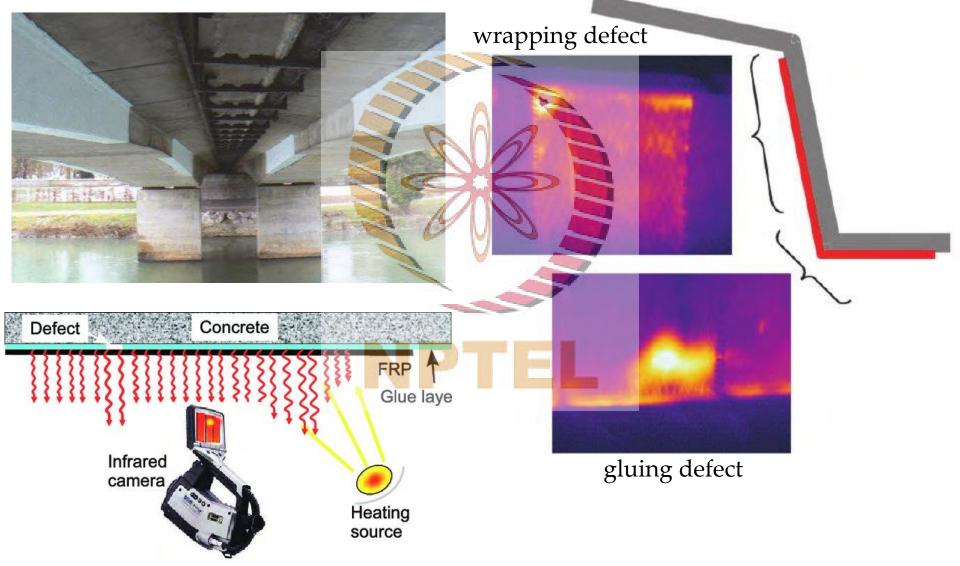

http://www.ndtoolbox.org/content/bridge/cd-description; http://www.acoustics.org/press/146th/Costley.htm;

Locating delaminated concrete - Infrared thermography

• Air layer - poor conductor of heat

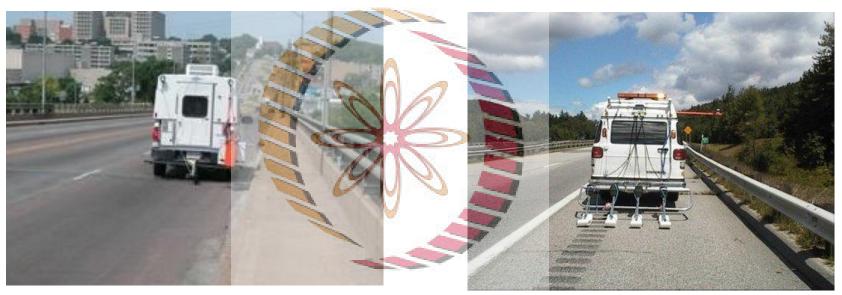


Locating delaminated concrete - Infrared thermography


 Example of an infrared thermograph indicating potential regions of delamination and cracks

http://www.mcsmag.com/infrared-visible-bridge-scoping/; http://www.w-nexco-usa.com/services.html

Thermal images showing defect on bonded CFRP wrap.



Taillade et al. (2012)

Locating delaminated concrete - Ground Penetrating Radar (GPR) systems

Ground penetrating Radar systems (radio waves)

High speed, high resolution Dual-Polarization horn antenna method

Low speed, high resolution using four 1.5 GHz antennas spaced equal distance apart

http://www.cflhd.gov/resources/agm/engApplications/BridgeSystemSuperStructure/345VechicleMountedGrdPenRadar.cfm

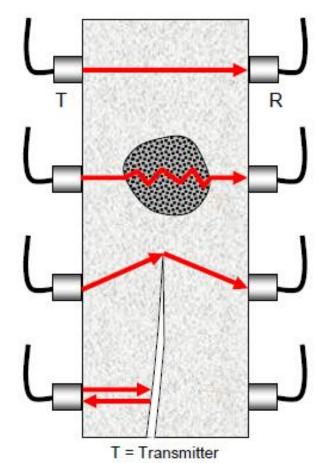
UTE OF TECA Locating delaminated concrete TININST, - Ground Penetrating Radar (GPR) systems 9 10 (a) Deteriorated areas of bridge deck assessed. toleg antenna (GSSI Model 5100) Decibels -19 35 10 20Deteriorated areas of bridge deck assessed using dual-polarized horn antennas (GSSI Model 4208) (b)

25

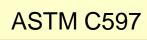
30

35

http://www.cflhd.gov/resources/agm/engApplications/BridgeSystemSuperStructure/345VechicleMountedGrdPenRadar.cfm


10

(c) Deteriorated areas of bridge deck mapped using hammer-sounding


Locating delaminated/cracked concrete Ultrasonic Pulse Velocity (UPV) test

- The time of travel of an ultrasonic pulse passing through the concrete is measured
- Influencing factors
 - Contact surface
 - Length of the wave path
 - Temperature and moisture content
 - Presence of reinforcing steel

R = Receiver

https://image.slidesharecdn.com/ultrasonicpulsevelocitytestforconcrete-141208113106-conversion-gate02/95/ultrasonic-pulse-velocity-test-for-concrete-17-638.jpg?cb=1418038308

Locating delaminated/cracked concrete Ultrasonic Pulse Velocity (UPV) test

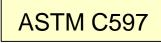
- Pulse velocity is a function of elastic constants
 - *E*, υ , and ρ

Pulse Velocity (km/second)

> >4.5 3.5 - 4.5

3.0 - 3.5

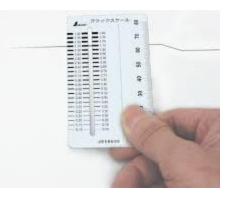
<3.0


Quality (grading)

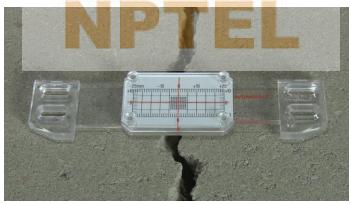
Excellent

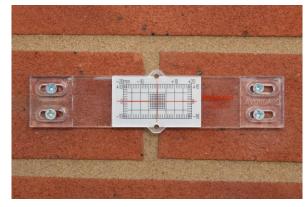
Doubtful

Good

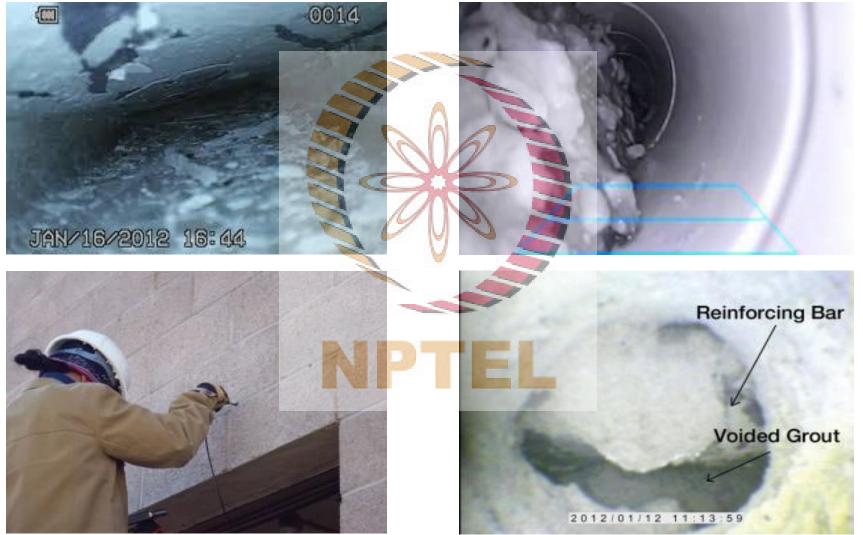


Web; https://theconstructor.org/concrete/crack-width-measurement/21745/; https://www.pearceandpearce.co.uk/services/defects-analysis/

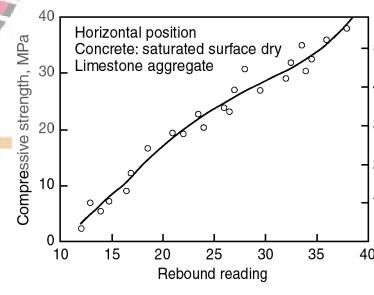

Investigation of crack – Live or dead


- Movements
 - Measurement of crack width
 - Monitoring movements (closing/opening of cracks)

Investigating concrete integrity Remote viewing - borescope

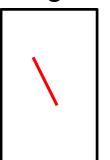

- Eye piece, objective lens, rigid or flexible fiber optic cable, camera
- Direction of view
 - Straight
 - Perpendicular
 - Any angle in between

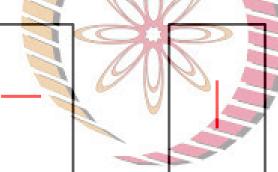
Investigating concrete integrity Remote viewing - borescope


https://www.fhwa.dot.gov/publications/research/infrastructure/structures/bridge/13028/index.cfm

Rebound hammer/pendulum hammer tests

- The test hammer will hit the concrete at a defined energy.
- The hammer measures the rebound of a spring-loaded mass impacting against the surface of the sample.
- Its rebound is dependent on the hardness of the concrete and is measured by the test equipment
- The rebound reading is correlated to the compressive strength





Extraction of concrete cores for preliminary investigation

- Poor handling of coring machines and/or samples during coring and transportation of samples
- Which will have minimum compressive and tensile strengths?

• Do not cut rebars while coring samples from real structures

Effect of internal cracks in cores on both the compressive and tensile strengths

Correction factor for transverse rebars, if any...

$$C.F Rebar = \begin{cases} 1 + 1.5 \left(\frac{r \times c}{c \times c} \right) \end{cases}$$

where,

r is the diameter of the reinforcement;

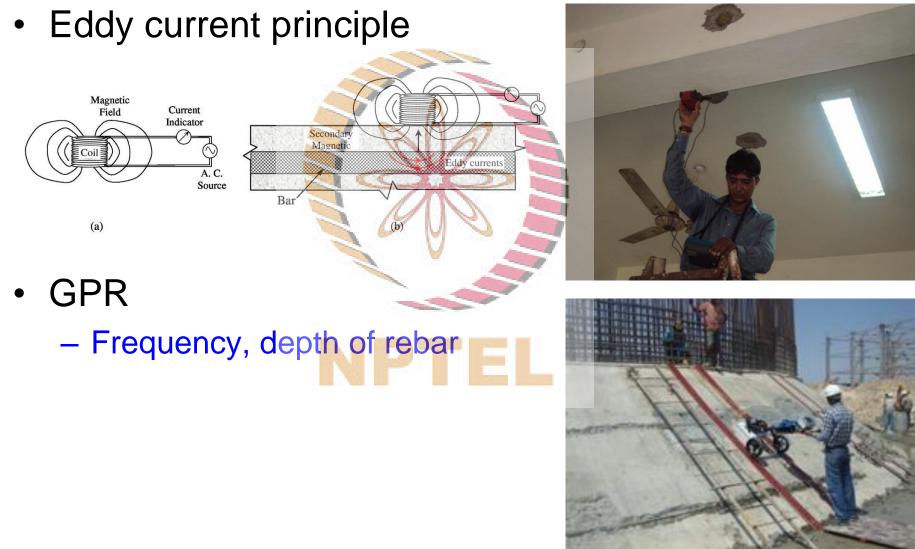
c is the diameter of specimen;

d is the distance of axis of bar from nearer

end of specimen;

1 is the length of the specimen after end preparation by grinding or capping.

Cutting of rebars must be avoided



Rebar Locator / Pachometer / Covermeter

http://www.vertical-access.com/ndt.html; http://www.theconcreteportal.com/nde.html; http://www.avantech.in/testing-consulting-services/concrete-ndt.aspx

Summary

- Service and exposure condition
- Steps for evaluation of reinforced concrete structures
- Visual and exploratory Investigation
- Various test methods to detect delaminated concrete
 - Various test methods are available
 - Should be chosen based on feasibility
- On-site concrete evaluation
 - Various standards and test methods are available
 - Should be chosen based on the requirement

References

- Andrade, C. and Alonso, C. (1996), Corrosion rate monitoring in the laboratory and on-site, Construction and Building Materials, 10 (5), 315-328.
- Andrade, C. (1993), Calculation of chloride diffusion coefficients in concrete from ionic measurements, Cement and Concrete Research, 23, 724-742.
- Andrade, C., and Alonso, C. (2004), Electrochemical Techniques for Measuring Metallic Corrosion, Recommendations Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method." RILEM TC 154-EMC, Materials and Structures, Vol. 37.
- Alexander, M. G., Ballim, Y. and Mackechnie, J. R. (1999), Guide to the use of durability indexes for achieving durability in concrete structures. Achieving durable and economic concrete construction in the South African context, Research Monograph, 2, 5-11.
- AASHTO T 277 07 (2008), Rapid determination of the chloride permeability of concrete, American Association of States Highway and Transportation Officials, Washington, DC., USA.
- AASHTO TP 64:2003 (2007), Standard Method of Test for Predicting Chloride Penetration of Hydraulic Cement Concrete by the Rapid Migration Procedure, American Association of States Highway and Transportation Officials, Washington, D. C., U.S.A.
- Abbas, A., Carcasses, M. and Olivier, J. P. (1999), Gas permeability of concrete in addition to the compressive strength of concrete, Materials and Structures, 22, 3-8.
- Abbas, A., Carcasses, M and Olivier, J. P. (2000), The importance of gas permeability in addition to the compressive strength of concrete, Magazine of concrete research, 52, 1-6.

References

- ACI 201.2R (2008), Guide to durable concrete, Reported by ACI Committee 201, American Concrete Institute, Farmington Hills, USA.
- ACI 222R (2001), Protection of metals in concrete against corrosion, Reported by ACI Committee 222, American Concrete Institute, Farmington Hills, USA.
- ACI ITG-8R (2010), Report on performance-based requirements for concrete, ACI Innovation Task Group 8, American Concrete Institute, Farmington Hills, USA.
- Aitcin, P. (2000), Cements of yesterday and today Concrete of tomorrow, Cement
- and Concrete research, 30, 1349-1359.
- Dhanya B. S. (2018), Study of the influence of supplementary cementitious materials on selected durability parameters of concrete, Ph. D. Thesis, IIT Madras.
- Emmons, P. H. (1993), Concrete Repair and Maintenance Illustrated, RS Means Inc., Kingston, MA, USA.
- Fontana, M. G. and Greene, N. D, (1978), Corrosion Engineering, 2nd ed. (New York, NY: McGraw Hill), p. 39.
- Raupach, M. and Buttner, T., (2014), Concrete Repair to EN 1504 Diagnosis, Design, principles, and Practice, CRC press, Taylor and Francis group.
- Federal Highway Administration Research and Technology, Non-destructive Evaluation (NDE) Web Manual (https://fhwaapps.fhwa.dot.gov/ndep/TechnologyMenu.aspx).

References

- Maierhofer, C. (2006), Application of Impulse-Thermography for Non-Destructive Assessment of Concrete Structures, Cement and Concrete Composites, Vol. 28, 2006, pp. 393-401.
- Tinnea, R. (2015), Corrosion in Public Aquariums, Material Performance.
- ASTM C 876, Standard test method for corrosion potentials of uncoated reinforcing steel in concrete, ASTM International.
- Harries, K. A., Kasan, J., Pittsburgh, P. A., Miller, R. and Brinkman, R. (2012), Updated research for collision damage and repair of prestressed concrete beams, Final Report Prepared for the National Cooperative Highway Research Program Transportation Research Board of The National Academies.

